Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Monit Assess ; 193(7): 430, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151379

RESUMO

The assessment of the ecological status of natural surface water, in terms of dominant trace metals, within an area subject to various sources of pollution including a non-ferrous metal ore mining, such as the West Rhodope Mountain, Bulgaria, is significant. The present study estimates the ecological status of river body waters at industrial areas of the West Rhodope Mountain, Bulgaria, simultaneously evaluating the possibility of state forecasting, together with assessing the potential risks, through the study of scenarios focusing on (i) possible variations of physicochemical parameters such as pH, concentration levels of trace metals, sulphates, and dissolved organic carbon (DOC) of surface water and (ii) consideration of potential spontaneous precipitation reactions in the studied waters. The ecological status of river body waters was assessed through a combination of experimental field, laboratory, and computational techniques. Al, Mn, Zn, and Pb were found to be the dominant pollutants with a variety of chemical species and distribution. The most significant difference characterizing the chemical species distribution in light of total spontaneous crystallization in the systems was found for Pb, followed by Zn and Mn, with the differences being more significant at lower trace metal levels. The calculated species were discussed on the basis of HSAB (hard and soft acids and bases) principle.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Água Corporal/química , Bulgária , Catequina/análogos & derivados , Monitoramento Ambiental , Chumbo , Metais Pesados/análise , Rios , Poluentes Químicos da Água/análise , Zinco
3.
J Trace Elem Med Biol ; 66: 126750, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33798814

RESUMO

BACKGROUND: Coal and coal processing industries provoke trace metal pollution, which has a negative effect on the water - soil - vegetation - small mammals eco-system, constituting part of the food chain and exerting a serious impact on human health. OBJECTIVES: Assessment of the environmental impact of Maritza iztok coal complex, situated east of Radnevo town, Bulgaria, by tracking the dynamics and accumulation of trace metals in the eco-system water - soil - vegetation - common voles - parasites. METHODS: Samples from surface waters, their nearby uncultivated soils, meadow uncultivated vegetation (Agropyron cristatum) and field common voles (Microtus arvalis) were collected. In situ measurements and laboratory extraction procedures and analyses were performed. Accumulation and mobility indices were calculated. The distribution of dissolved Mn, Ni, Cu, Zn and Pb chemical species in water-soil extracts was calculated using a thermodynamic approach. Two thermodynamic models were applied - the classical ion-association model for calculating the inorganic trace metal species and the Stockholm Humic Model (SHM) accounting for the complexation reactions of trace metals with organic matter. Visual Minteq computer program, Version 3.1 was used. The relationship chemical species - bioaccumulation was discussed. RESULTS: Pb and Mn, together with SO42- and PO43- were found to be the main pollutants of waters in the region. The soils studied exhibited low concentrations of trace metals, not exceeding the specified MACs. The content of Mn was the highest, followed by Zn, Pb, Cu and Ni. The highest phytoaccumulation coefficients in the studied uncultivated grass vegetation were calculated for Cu and Zn, being 1-2 orders of magnitude higher than those of Mn and Ni. The accumulation of trace metals was explained on the basis of ions mobility and chemical species distribution. In the case of the host-parasite system Microtus alvaris - Hymenolepis diminuta, Zn displays the highest accumulation coefficient, followed by those of Cu and Pb. The parasite showed a higher bioaccumulation compared to infected common voles, with the highest bioaccumulation found for Ni. CONCLUSIONS: The bioaccumulation of trace metals depends on their mobility, concentration and chemical forms in water-soil solutions. Metal-organic species stimulate the phytoaccumulation of trace metals while inorganic ones suppress it. The sequence of trace metals bioaccumulation in common voles is analogous to that of soil contamination. The parasite exhibited higher bioaccumulation levels compared to infected common voles.


Assuntos
Agropyron/química , Monitoramento Ambiental , Poluição Ambiental/análise , Hymenolepis diminuta/química , Solo/química , Oligoelementos/análise , Animais , Arvicolinae , Bulgária
4.
J Trace Elem Med Biol ; 58: 126440, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31775071

RESUMO

BACKGROUND: The impact of chemical elements on the biosphere is a function of their concentration and chemical form. Elucidation and prognosing of the latters in water basins and soil extracts is of particular significance for the assessment of their bioaccumulation in plants and animals. OBJECTIVES: Trace metals dynamics in the system water - soil-plant-wild rats - Hymenolepis diminuta in two agro-industrial zones (East and West) around Maglizh city, Bulgaria were investigated through experimental studies and thermodynamic modelling of the chemical species. METHODS: Samples from surface waters of rivers, their nearby uncultivated soils, meadow uncultivated vegetation (Ranunculus acris and Gramineae) and field rats were collected. In situ measurements and laboratory analyses were performed for the determination of the physico-chemical characteristics and total concentrations of Al, Fe, Mn, Ni, Cu, Zn and Pb. The distribution of their dissolved chemical species in water samples and in the aqueous soil extracts was calculated using a thermodynamic approach. The relationship chemical species - bioaccumulation was discussed. RESULTS: Waters and soils in the East zone of Maglizh area were found to be more polluted compared to those in the West one, regarding Ni, Mn, Zn, Pb and Cu, while Mn and Cu displayed the highest mobility in West zone soils. Trace metals contents in Ranunculus acris exceed that in Gramineae, since the highest accumulation factors were calculated for Cu and Zn. The highest accumulation in rats was found for Zn followed by Cu, being higher in the West zone. Thermodynamic modelling shows that Mn2+ free ions are dominant in both waters and aqueous soil extracts. Ni2+ and Zn2+ ions followed by metal-organic complexes are dominant in waters of East zone while metal-organic complexes followed by free ions are dominant in waters of West zone and both soil extracts. Metal-organic complexes are dominant for Fe, Cu and Pb in all samples studied, while mainly hydroxy forms (Al(OH)4-) followed by metal-organic complexes are typically for Al depending on pH. CONCLUSIONS: Experimentally established bioaccumulation of trace metals in the studied vegetation and rats is a consequence of the total concentration of trace metals in waters and soils, their mobility and chemical species. The dominance of organic complexes of trace metals is a prerequisite for their bioaccumulation in plants. Rats are in direct contact with the soil solution and therefore, of importance is the content of free ions of Mn2+, Ni2+, Zn2+, which are easily absorbed through the skin. The host-helminth system wild rat/H. diminuta could be used as a bioindicator for trace metals pollution.


Assuntos
Cadeia Alimentar , Hymenolepis diminuta/química , Plantas/química , Solo/química , Oligoelementos/análise , Água/química , Animais , Bulgária , Geografia , Ratos , Distribuição Tecidual
5.
Environ Monit Assess ; 190(7): 383, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29881918

RESUMO

Trace metals pollution of surface waters and their nearby soils in the metallurgically polluted Kardjali region, Bulgaria, were studied. Thermodynamic modeling including the dissolved organic carbon (DOC) was carried out for evaluating the distribution of metal species in waters and soil solutions. Zn was found to be the most widespread pollutant in the water samples, followed by Cu, Mn, and Cd. Geoaccumulation indices of trace metals for the tested soils were calculated, indicating that regarding Al, Fe, Co, Ni, and Cu all soils are "uncontaminated". The most significant soil pollutant was found to be Cd, with all soils being either "extremely contaminated" by this metal or close to the limit, followed by Pb and Zn. The dynamics of trace metal chemical species distribution in surface waters and in the water-soluble soil fractions, as a result of possible spontaneous precipitations, was calculated by applying different thermodynamic models. Regarding Mn, Co, Ni, and Cd in waters and aqueous soil extracts and Zn in aqueous soil extracts, their free ion species prevailed, being more labile and hence toxic for the ecosystem. In the case of Al, Fe, Cu, Cd, and Pb in the waters and aqueous soil extracts and of Zn in waters, stable organic complexes with bidentate bonds, Me(OH)4- or Me(OH)02 prevailed.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Bulgária , Ecossistema , Poluição Ambiental/estatística & dados numéricos , Metalurgia , Oligoelementos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...